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ABSTRACT#*

The first part of this thesis is concerned with the
mathematics of filtering in discrete time. Filters are de-
fined for the purposes of 1) condensing waveforms into im-
pulsive functions, 2) wave shaping, 3) noise suppression,
4) signal detection according to the criterion of maximum
signal-to-noise output at an instant, and 5) the same over
an interval. The behavior of the complex Fourier trans-
forms of some of these filters is ccnsidered and connec-
tion is made with the theory of orthogonal polynomials,
This leads to the possibility of a feed back representa-
tion of these filters.

In the second part, computational experiments are
described in which digital filters are applied to seismic
body waves to 1) try to determine whether the first arri-
val is up or down on a seismogram corrupted with micro-
seismic noise, 2) increase signal-to-noise ratio on seis-
mograms where noise has almost obliterated signal, 3) as-
sign polarity to each of two seismic first motion wavelets
so they can be termed "same" or "opposite," 4) remove spec-
trum of seismometer from data, 5) investigate the time var-
ying spectral structure of underground nuclear shot seis-
mograms , '

Submitted to the Department of Geology and Geophysics on
January 14, 19 in partial fulfillment of the require-
ments for the degree of Master of Science at the Massa-
chusetts Institute of Technology
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INTRODUCTION

Although time is a continuous parameter it often
happens that observations are made at discrete time inter-
vals, Even when continuous observations are made, it is
often desirable to digitize them for computer processing.
This is strong reason to do some mathematics in discrete
time. An even stronger reason as we will see is that
things which are conceptually quite hard in continuous
time have analogues in discrete time which are easier to
understand.

Fortunately, in disorete time many general principles
can be observed with wavelets of very short time duration.
This enables ues to consider some very simple examples before
launching off into the general theory. These simple examples,
however, will not forshadow the way in which we will connect
the theory of least squares filters with the general theory
of orthogonal polynomials,

We denote time functions b, with a subscript as the
time parameter. When the time function has finite time
duration, we may denote it as ? or (bo,bl.....bn). Any
time function which has finite energy is called a wavelet.
The memory functions of filters too, are sometimes called
wavelets,

I. Introductory Examples

We introduce the main topics by means of some
examples. One 1s given in discrete time an input series
(bo’bl) of length (time duration) two, a filter (ao,al)
with an impulse response of length two, and the output
reaulting from convolution to be (°o'°1’°2) of length
necessarily three. The ¢ is determined from the} and the
B by convolution as is the usual procedure for linear
filters, 1.e.
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1) Spiking filter

To design a spiking filter one would choose (aov,al)
so that @ comes out as closely as possible to a spike, i.e.
either (1,0,0) or (0,1,0) or (0,0,1).

2) Wave shaper

To design a wave shaping filter one would choose
(ao,al) so that € comes out as closely as possible to some
prescribed waveform (do’dl’dz) .

3) A matched filter

To design a matched filter one would choose (ao,al)
so that ¢, comes out as large as possible while making the
unit energy constraint (@ea2X:|) on the filter. 1In this
problem one doesn't care what o and ¢y turn out to be.

4) Maximum energy sum filter

To desigh a maximum energy sum filter one would
choose (a ,a,) 8o that the energy output (o rC>+ 6:' )
comes out as large as possible while making the unit energy
constraint (& >+ a’= | ) on the filter.

A quick sketch of the solutions to these problems 1is
as follows: Since the spiking filter is a special case of
the wave shaper it will be sufficient to work out the
solution for the wave shaper. Requiring ? to be as close
as possible to 1 1s equivalent to minimizing the squared
distance between them

(£-31* = (e,-4)" + (&-d) + (6-d)"

2 (a, b, Jo)&* (2,8,%2 b,- ‘0)&"' (o b~ ’)a.

QR



Setting the partial derivatives with respect to a, and 8,
equal to zero we get the simultaneous set for @,

'(b.’*b,")a. + (b,bg)a, = beds + b,d,
(b bo)a, + (bs*b*)a, = bedi + b, ds

We mention the particular case‘aL(l,o,o) called the
zero delay spiking filter. The solution of the simultaneous
set is

(d., ) 40) h (5:’"’ bn;, - B.b.)

Recalling that subscripts are the time variable we now
consider the Fourier transform of the solution

Fa(“’) = ao"'ale‘;“ = (b‘a.+ bl;) - b’b'e-;“

The only zero of this complex function is in the upper
half of the complex frequency plane, a fact which will be
shown true for all zero delay spiking filters. This has
considerable importance in feedback systems and in some
other connections to be discussed.

The solution to the matched filter problem posed in
3) above 1s most easily done by means of Lagrange multipliers.
We wish to maximize cl.under the constraint
Lagrange's method is then 10 maximize

max[€ = A(a}+ ‘o.)]
max[d.,t. +a b ~ ?‘(“:"' “va)]

Setting the derivatives with respect to a, and a; equal to
Zero, one gets




(ama)= (hb)n = gtk

Thus the filter (ao,al) is simply the signal input time-
reversed and multiplied by a scale factor.

The solution to the maximum energy sum problem 4)
is somewhat like the matched filter. Again one uses
Lagranges method and maximizes

C.*""c.a"'c:. - x (a.a'*a.'l)

by setting derivatives with respect to the components of a
equal zero., This results in the equations

bebt b)) (% °

n

b, bW Lo 1]) (& °

which is the standard eigenvector (:), eigenvalue'()\)
problem, The two solutions to this problem are

%)) _,=h)
Fi = -]%E‘ and & = =
It i3 notable that the fourier tranaform of these functions
Flal@)~1+e Fra~ 1-¢

have zeros on the real frequency axis, This will also
happen with longer filters.

II. Spiking Filters
A. Normal Equations

In the first introductory example we considered the
problem of building a two term filter which would condense
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a two term input i.ato a spike function. Now we would like
to build an m+l term filter to condense an n+l term input
into a spike,

A data wavelet is given by b-(bo.bl.....b ). Ve
plan to construct a filter 3 = (ao,al,....a ) Filtering
48 defined in this way: When data D goes into a filter a.
an output wavelet T 1s produced according to the following
matrix multiplication.

(1I-1)

This operation is often called complete transieunt convolution.
This 1is more loosely written as

C; = ? bi-; &; (11-2)

Here a small amount of confusion can arise about the limits
of the sunmation because negative subscripts may appear
within the summation. What is meant is that one should
consider the terms "off-the-ends" of the wavelets to be zeco.
With this consideration we might write the limits of the
summation as minus to plus infinity. The artifice of using
infinite limits on the suma turns out to avoid some need-
lessly cumbersome notation,

Now we introduce another wavelet ﬁ.wm.ch will have
the same number of components as 'c’. We call q the desired
output of the filter. We saw that T 1s the actual output.
'rhc actual output T vas seen to be a function of the input
D and the f1lter T. The problem now 1s to determine @ so

P
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that's and d are very much alike. Specifically we will chovuse
Z 80 that the difference vectorl’&-’&lhae minimum length
squared (in n+m+l dimensional space). In other words we

are minimizing
meh

2 (ci-9)” (11-3)

R X J

by varying the components of 3. Inserting the expression

for € in terms of @ and ® we get
meh

z (2. b;.; 2 - “&Y' (1I-4)

L30

This fundtion of m+l variables will be minimized if its
partial derivative with respect to each of (ao,al,...,am)
equals zero, Setting derivatives with respect to a 2 equal
zero we get an expression for m+l equations

O = z b, _, (2; b;-y @~ di) ’ (11-5)

where one equation is implied for each value of L(0&£ A€ m),
These are called normal equations because they say

that the error vector, the quantity in brackets, will be

normal or perpendicular to the space spanned by the vector

set b, _, (column vectors in the matrix of equation II-1).

We bring the equations into standard form by bringing

the homogeneous part (the part depending on ‘5) to the left

side and the inhomogeneous part to the right

mvh nth
Zb;-; (gb;-; 43) = Z b.s di (11-6)

L20 v%0

In matrix form the normal equations become

(1I-7)
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which can be abbreviated
T - T
B (B a) =B'd (11-8)
and which+«is identically equal to

(BTB)a, = BT“ (1I-9)

The matrix B’B can be written as

1. “.0-1 ‘.
rb.‘ ree b“ ) b‘ b. \ r Y b 1 d.
' N A

o

L J

....3
]
o

T -:oh\".. "'r'n:
= [nrr
BB = ["r
Fm Ty)
where

h-y )
ib;bgﬁ F JEN
T

0 if 9PN

r, =

This rJ is cailed the unnormalized transient
autocorrelation of 't?.
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We list three special cases of these equations.

1. Zero delay inverse filter - This is whenlg -
(1,0,0,...,0).
2. Spiking filter - This is when the impulse is
chosen any where 1n'3. It has been frequently observed
.in practice that putting the impulse near the middle or'a
resulta in an actual output ¥ which resembles'ﬁ more
&1ose1y than if d had been chosen as in the zero delay case,
3. Waveshaping filter - This is when 3 1s not chosen
to be an impulse at all, but is chosen to be some arbitrary
wavelet. The filter a then tries to convert the wavelet
® intc the wavelet '3.‘

It is worth noticing that the homogeneous part of
the normal equations (II-9) depends only upon the autocor-
relation of the input © and not on® itself. If the desired
output of the filter is an impulse with no delay (3 = (1,0,
0,...,0)) then the inhomogeneous part becomes the column
vector

. bs]

- o

Bd = |o
o

Now in this case we see that the waveform'g does not enter
the inhomogeneous part either, except for the magnitude of
bo' Inspection of the normal equations shows that this
magnitude will not affect the waveform of the filter @ except
as a scale factor,

Thus the normal equations in this special case (zero
delay inverse filter) depend upon the signal waveform, but
only through its autocorrelation. Since autocorrelations
contain no phase information it would he a curious point as
to what the phase spectrum will be of the solution 2. We
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will study this later and come to the curlous conclusion
that the phase spectrum is such that as much as possible of
the energy in the waveform 2 is cramped up as close as
possible to a,- This is ca%ied the property of minimum
phase delay of the waveform a.

To fix ideas we now give an example of the deter-
mination of a zero delay inverse wavelet. Suppose that
the signal we are dealing with is the waverorm's-(z,l).
We want to design a three-term rilter'ﬁ-(ao,al,ae). The
desired output must then be n+m+l = 1+2+1 terms long and
18 4 = (1,0,0,0). From (II-10) r, =5, r; = 2, Ty = O.
The normal equations are

5 2 0| |% {
a 5 al |la] =0
0 2 5 o

and the solution is B = (42,-20,8)/85. To see how good the
filter i8 we compare:

actual output t = (84,2,-4,8)/85
desired output d = (1,0,0,0)

B. Minimum Phase

Discussions of minimum phase in the literature are
mostly in terms of continuous time. Here we wish to develop
its properties from the point of view of digital filters
which are not so well known, We begin by considering an
autocorrelation function of the type of equation (II-11)
where

-

r - (r.n )r-h-‘!) i '.)n') r’, r") er e r”"') r"l) (II"'13)

Y
We wonder what functions b might have this autocorrelation.
After we have found the class of functions's that have this
autocorrelation we can enquire which one has its energy as
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close as possible to bo and is, therefore, the minimum phase
delay wavelet. One thing qgich we know to begin with 1is
that more than one wavelet b may have autocorrelation B
(for example; the time reversed waveform, the negative
waveform, and the time reverse of the negative waveform).

We begin by spectral considerations. Let F denote
Fourier transform. It is commonly known that the energy
density spectrum of the wavelet may be expressed in two
equal ways:

F () = (“) b F @ (II-14)

Thus the problem is to factor F, (W) into Fb(w) and F(w).

Then we can simply take the 1nverse transform of F_ (b))

to get the waveform'g The Fourier transform of ¥

simply nh

F, () = K+ z; f co w.h
Y] (11-15)

-t
and letting z= € we get

F(@=Z h+ . +-.-+Z r+r+zr+,.,z .

- an
:Z é‘n +r,.-,i+o--1'",zh+""'n2 (11-16)

We notice that the spectrum has been represented as a poly-
nomial in z. The usual procedure in factoring a polynomial
is to find its zeros. Since r =r_,, we notice that F,(Z) is
unchanged if we replace z by z'l. Thus if Fr(zo) is zero
then Fr(l/Zo) will also be zero. Thus for every zero z,

z, is also a zero. Also since the coefficients of the
polynomial are real the zeros are either real or they occur
in conjugate pairs. Thus if z, is a zero then-E; is a zero,
Most of the zeros will probably occur then in groups of

Hnrre,
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four such as

ALm

=
ap
\\\\~.- 'Ze

. ]{;‘

One might wonder about the case

2,2 %,
(zeros are first Ordey)

-7
\‘//i =2,
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where there are two single zeros on the unit circle., It
turns out that this can't happen. Whaut we are plotting
here is possible locations of zeros of energy density
spectra like equation (II-16). When Z, 1p on the unit
circle U. is real by the relation Zs ew « Thus we
are talking about the spectrum at some real frequency. A
function like the following

{Fl

f

%
w,

which has a single zero at w, is not an energy density
spectrum because it is not positive for all frequenciles.
More generally, energy density spectra cannot have zeros
of odd multiplicity on the unit circle in the .‘i;-plane.

We now know that for every zerp Ze2 € ° of the
energy spectral polynomial that?.'; e'“®* 15 another zero.
After we factor the spectral polynomial we will be able
to write the spectrum as

F (%)= i'"r.[(l '1.)(3'20)”][(1-2: )(2- ;:)] (11-18)

or in terms of W

ﬁ_ (0)= e;"“r‘ [(c‘:'?- —L“'X )][(e' w e :'“".X )J
D W \_____vv
A(w) 8 (W) (11-19)
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Now 1if we show A(@)w~ B( W) then we have factored
the spectrum F, (W) into the desired conjugate parts
Fb(W)Fb(w)o LW

But both are polynomials in € of order n and
both A(ﬁﬂ) and B(W) have the same zeros. Thus they must
be the same function exceﬁ% for a constant multiplicative
factor. This can be absorbed from the factor r_ et
This 18 called factoring the spectrum,

We notice that the factorization could have been
done in many ways depending on which of the pair of zeros
is put into Fb(w) (the other one then going into F (w)).
Normally, there would be 2" different ways of doing this,
the exception being the degenerate case when zeros occur
with multiplicity greater than unity. Then there would
be fewer than 2" wavelets with the same energy density.

One of these possible factorizations is of parti-
cular signifigance. The factoring is done so that all of
the zeros which are outside1 of the unit circle are put
into Fb(a)) and the opposite member of .each pair which is
inside the circle then goes into rb(a)). In this case the
wavelet must be real because each root is either real or
it occurs with its complex conJjugate.

Combining all complex roots z with their complex
con,jugateaé‘ +ify )(‘k-&p‘)we write for the wavelet's
transform

F, (%)= w[(!-%.)ct-a.)---@“r@( P,
oh real axis other BBRes oursile Un/t Circle

Taking the inverse transform.and letting "#" denote con-
volution

1 The case with zeros exactly on the unit circle corresponds

to a speéctrum which is exactly zero for some real W . 1In

any physical case one can usually perturb the spectrum slightly
to avoid this difficulty.
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b= congt FPLC I ) :ee( N )]
= (- eond (;‘,4)*(z‘;..:),,....(‘;ﬁ)_;«",)m (11-19)1)

(11-19.2)

Thus we have a string of convelutions of many wave-
lets each of either 2 or 3 instants duration. Since all
of the roots were chosen outside the unit circle we have

IZd >1 e &y vy >

This means that in each of the wavelets the first term is
larger in absolute value than th: last, Thus in the
convolution of all terms, the energy will be compacted
toward the beginning. If any one of the zeros had been
chosen instead, from inside the circle, then the energy
would be spread further out on the time axis.

We will now prove that

1 % of Total Encrgy in Lnterwal 06T
160

_End of Vayelet
T (time)

the summed energy from O to any time t for the minimum
phase wavelet 18 greater or equal to that of anyother wave-
let with the same spectrum,
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Consider a two term wavelet (b,s) "bigger," "smaller,"
with its zero outside the circle. Convolve it into an
arbitrary wavelet P = (po,pl,....pk). The result is

-P:»:(ba‘)*?"(h“’” P""a-’ """ e '”’P“un)

If instead we had chosen the reversed wavelet (s,b) with
its zero inside the circle, we would get:

.E'n = (slb)*; = (Sf‘) s’o*b”o, SPS'.'bPa)"' b&)

Then we consider the partial energy from time = O up
to time = T and tabulate the difference between B, and B .

T T
2B = > (P

T=o0| (bR)" - (sR)> = (b= 56"
=21 | (6RY+(bpespY - (sRY™- (56 +bRY= .
(bR)” - (s = (=57
T= (bPY%(bP+ SP‘)* —(se)- (5?,_+b?,)"-_-_
(bR) - (s = (=576,
evC,
VN - (R - o

T-det| ()™ +(5P) =~ (se)=(bR)" =

o
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Thus we conclude that for any time T the wavelet'Bout
with the zero outside the unit circle contains (b2- 2)p2
more energy in the interval O€® t&T than the wavelet T’in
with the zero inside. The exception is at the last lag
when they have both put out the same total energy. It is
not difficult to show that the above statements would still
be true if components of vectors were complex and squaring
were replaced with multiplying by conjugates.

To prove the minimum phase wavelet delays energy the
least, one imagines that the convolution (II-19.2) had
been done s0 that k zeros were outside the circle and
n-k were inside. We have Just shown that if one of the
zeros from inside were replaced with an outside zero, that
the new convolution would have less energy delay. This
argument is repeated until all zeros are outside.

Finally, we show that zero delay spiking wavelets
determined by least squares will have all their zeros out-
side the unit circle.

We recall the following from previous portions of
this thesis:

1) The least-squares spiking wavelet is a wave-
let T which when convolved with a given wavelet b tries
to give an output equal in the least squares sense to
q - (do,0,0,...,O). Specifically, } is chosen to minimize

% ((a*b);-d;_) (@,bs - d0) + %(a*b)

2) We recall that the choice of size of d, affects
the solution vector'z only as a scale factor. Thus do
could always be chosen 80 that a, = l. We note that a
scale factor has no effect on a per cent total energy
graph.

3) We recall that if a zero of a wavelet is removed
from inside the circle and replaced by the conjugate inverse
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zero outside, that the modified wavelet has a per cent
total energy curve which lies above that of the origlnal
wavelet. The per cent total energy curves may touch one
another at points except for at time t=0 where the curve
with fewest zeros inslide the circle is definitely above.

We can view the normal equations as minimizing the
energy 1n'3 convolve'% after time t=0 subject to the con- j
straint that the energy at t=0 be equal to (aobo)aa(bo)a.
That is, we could view the normal equations as minimizing
the per cent energy after t=0. But this is the same as
maximizing the per cent energy at t=0, But if the per-
centage energy at t=0 is to be maximized for the wavelet
2 convolve'ﬁ, then there must be as few as possible zeros
inside the circle. This happens 1f'3 has none inside and
hence is minimum phase.

TN, pesallh i i v

C. Connection of Least Squares Inverse Filter with Orthogonal
Polynomials
Given an energy density function

LV(;) = e 2.4"‘*"-2"r,+"‘.+2r;+-~-+2"r*+...

one could take that function and use 1t as a welghting
function to define a set of orthogonal polynomials, We
choose the interval of orthogonality to be the unit circle
in the z plane which corresponds to the real frequency
axis from=9" to + ¥ in theWw plane. Thus we would con-
struct a set of polynomials fk

40 = doo
f = a,+a4, 2
fo = Gap+ &, 2+0d, 2"
8o that

+r -
Smn 3#[.# LV(U)'F.\ (Wf,(Wdw =

m#n

(IL-20




on the real axis. Expressing the same thing with complex
polynomials on the unit circle one gets

Sm\ = 3-%-" § W(I){M(t) ful® éi}_

f2l =1 (11-21)

We illustrate the construction of these polynomials
in such a way that it will be seen to be equivalent to the
least squares normal equations, Consider the construction
of £f,. Let [f ,f 7] denote the dot product defined by
equation (II-20). The vector f, 18 of order two say

f,= G+ C 2+ C.Z

and must satisfy the orthogonality conditions

[f..f]l=0
['Fa- fi] =0 (1I-22)
['F; ) f;] - '

Since f2 perpendicular to any linear comblnation of
fo and rl, it is perpendicular to any polynomial of order
less than 2. Thus the orthogonality relations could be

written
Lfa,l]

[f.,2] = o
[f a,'Z?J z Comet

v

o

(11-23)

This set of orthogonality requirements (II-23) can
be written out in full as

[1,1]ce + [2 e +[351]¢,= 0
[L2)ce + [2,2]c, +[2) 2]z o
[1,2]ce + (2,206, +[ 2] 2] cometr

(1I-24)
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We now examine the coefficients in this simultaneous
set. Consider [z",2"] .

+r i =t
[Z', "] = 'a'.‘_tr' S_,,.(r""”"" wtar,cosaws. e e fw

+ir

- Sl?r' #r (tarcos w+an com 2w+ Yoralrmti aitr-obdfs

r'\-M

Hence the orthogonality relations (II-24) can be
written

rh F nllc, (11-25)

ra b KllCe

This 1is almost exactly the same as the normal equa-
tions (II-7) for the least squares inverse filter. The
only differentes are a scale factor in the inhomogeneous
part and "time reversal" of the solution. But this will
not affect the waveform & except by a scale factor and
time reversal.

Thus we have shown the important result that follow-
ing two problems are equivalent: '

1) Find polynomials which are orthogonal on the
unit circle with weight Y, (w)

2) Pind least squares zero delay spiking filters
of different lengths for the spectrum ‘Yr W)

ro ko hfes] [
-— (o
o |

This result is important because it allows us to
apply many results in the classic field of orthogonal
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polynomials tc least squares filter theory,

One application is to use the recurrence relation between
successive orthogonal polynomials to gencrate the filter of length
ntl from the filter of length n, This trick greatly facilitates computing
the solution of the normal equations, The relationship for getting

fn41 (2) from £,,(Z) is the recurrence relation (Geronimus 1960)
° m
U,.’ 0 f..“, ,( %) = qﬂﬂ,o f( i)"'“lﬂﬁ,nﬁ z fm (Ji') (11- 26)

where the two side conditions used to get “,‘,, N and am-ﬂ, ma!

are first
o‘ma,m-n
(“m,m i+ Emme Bt o Bm o P )2 e (1-27)
Kmy1j0 Km0
and second
2 d > (a )"
(dnﬂp)"( n,o) = ( i, mer (11- 28)

The choice of sign for the square root is immaterial as far as
polynomial orthogonality is concerned. It is customary to choose it

8o thatd."‘n" the first term in the spiking wavelet is positive, The
recurrence relation can be started off by choosing any value whatever
for dq, . The result is just a scale factor in the inverse wavelet.
From equation (I1-20) it is evident that the recurrence formula can be
started off .‘x: a,‘, - ( r,)‘}s'.

These relations appear to have first been derived by Szego (1939).
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Another readable account is Geronimus (1960)., Levinson (1939) also
derived similar, but not identical relations for the filter problem}
although he does not mention any connection with orthogonal polynomials,
Levinson's scheme is even more useful than the polynomial recurrence
relations because it allows solving the normal equations for arbitrary
inhomogeneous part,

Another valuable result of the connection of filter and poly-
nomial theory is the following, All the zeros of all the polynomials
generated by the recurrence relation above are known to lie inside

the unit circle (Geronimus 1960), This means that the time reverse of

the associated filter is minimum phase. Because of this we can

invert the wavelet, i.e, take the inverse of its spectrum,

J
‘M + Qm.,l"‘ ' """4. %M

b,+b,£+b,_z"+---

Since the polynomial a{z) has no zeros inside the unit circle,

the infinite series b(z) converges at least up to and including the unit
circle, This means that the wavelet b, has finite energy and is mini-
mum phase, The wavelet 2 has a spectrum which is in a least squares
sense* equal to l/y(g). The spectrum of the infinitely long wavelet_I:
is exactly the inverse of the spectrum of 3, Hence we conclude that
the spectrum of-g is equal in a least squares sense to V(U) « Thus
we have found a way to compute in a least squares sense the minimum

phase wavelet of a given 2utocorrelation function, Futhermore, the

P a
*Least squares in the sense that S blw)a(w)- 'llbia minimized
where b(Ww) has power spectrum Y (w).
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computation is quite easy because of the recurrence relation. It is the
most efficient method known to the author who has computed 500 terms
of the minimum phase wavelet in about a minute on an IBM 7090 com-
puting machine.
D. A Comment on Autoregressive vs Moving Average Reprecsentations

A question arises whether it is more efficient to characterize
a stochastic process by the first n terms in its ''autoregressive operator"
or by the first n terms of its "moving average operator.' Whatis meant
by this is the following: Usually filtering is thought of in terms of
convolving filter coefficients% with a data series, This might be called
''moving weighted averages'' or more commonly, 'moving averages."
This is equivalent to multiplying the Fourier transform of the data
by that of the filter, Substituting zx= O.&wit is equivalent to multiply-
ing z-transform polynomials which convolves their coefficients,
Filtering could be done in another way called "autoregression.' Instead
of multiplying the data polynomial by b(z) one divides it by the poly-
nomial a{z). This is called "feedback' filtering for reasons which
should be apparent to anyone who has ever divided polynomials by the
method of synthetic division (see Lanczos 1956).

By "efficiency' we mean the following: suppose we want a
filter to represent "(’)and it is easy for us to compute both } and-l;
quite accurately; in fact, we wish to use many fewer terms than we can
compute, Which characterizes v(“) more accurately for small p,

2 4
the moving average approximation 5. + 5, | 2 1'5"'! L IO " & or the
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autoregression approximation l/(ao-i-a, zt. . .+apzp) ?  Whittle (in

press) observes that the autoregressive coefficients seem more
efficient and suggests that the reason is that for the series he deals
with {economic), autoregression is a more realistic physical model,
The author has also observed that the autoregressive coefficients

seem more efficient in geophysical time series, but suggests a different
reason, When we digitize continuous functions we usually digitize

at a rate high enough to avoid appreciable frequency fold over, A

typical spectrum looks like

. S

t »

The inverse spectrum looks like " w
"r

4 L'

L 4

Since the inverse spectrum tends to have much more band-
width, its wavelet tends to be shorter, This would indicate that when
these conditions apply a filter using feedback can do a better job for

the number of components than a filter which doesn't,
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III Generalized Wave Shaper with Noise
A, Derivation of Normal Equations
Here we imagine the following model of a physical

sy stem to apply

Physical System

En— ——
: { white light De o linear filter bk'——Qdormation
L <white light e ﬁnear filter u}" noise ]

constructed
filter

desired output

We want to design a filter to operate on the output of the physical
system to give us some preferred output. One set of formulas will
enable us to handle the following problems,

Problem 1.  Given the information wavelet b, the power of the infor-
mation, and the power spectrum of the noise, convert each information
wavelet by which comes out of the system to some other waveform dy.
For example we may be converting a long drawn out function by into a
nice short one like a spike or a minimum phase wavelet. Of course, we
do not want the filter to respond very much to noise,

Problem 2, Given the information power spectrum and the noise power
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spectrum design a filter so that just the information comes out as
uncorrupted as possible. The information inight be allowed to come out
with some time delay. On the other hand we might want to predict the
information before it comes out of the physical system, To see that
prediction is a reasonable thing to do,considerimy an extreme case where
noise is absent, the linear filter bk "rings' for a long while, and the .
information white light series consists of impulses widely spaced in
time. Of course we cannot predict the onset of a ring, but once a
ring starts we can easily predict the rest of it,
Problem 2 was treated by Levinson and Problem 1 was solved
by the author in gonnection with some geophysical problems. They
are very little different, It will be seen that Problem 2 is a special
case of Problem 1 so we begin with Problem 1 and specialize the
results later,
Let b be the signal wavelet of length n+l,
Let G- be the optimum filter of length m+l,
Let d be the desired convolution of a and b of length ndm+l,
Let {{ be any noise wavelet,
Let ! be a white light series which is convolved with u to give a
statistical model of the noise process,
Let M be a white light series of signal wavelet (b) arrival times.
Let % denote convolution,
The input to the filter is the signal plus noise, i.e., (b#x +ux§ ).

The actual output will be this convolved with the filter, i.e, (b#k «x§ )*a.
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The desired output is the wavelet d, cccurring every time a signal
wavelet arrives, i, e. . d*,a . The expected sum squared error
is defined as: expected sum squared error = expectation of

{(actual output-desired output)z
a

- E_ (bwps “*g)*“"‘l\*/‘ (111-1)

Since convolution is associative .and commutative it is valid
and will be convenient to drop all asterisks in the expansion of the

above square,

- E[(b". o ( /c!a) e (d }c)z- J.Ha}"- Auad§u +2b ua."‘f/‘] (111- 2)

By taking the expectation inside, it is seen that the last-two
terms depend on E(!,a )¢ We will assume this to be zero. This
means that the signal wavelets arrive at times which are uncorrelated
with the noise wavelets.

We recollect the remaining terms,

= (ba-d)'E(m*+ (ua)"E(§Y)

(I1I-3)

From here on the derivation will algebraically resemble that of
the spiking filter, It is convenient to rewrite these convolutions in
subscript summation notation, i.e.

ba - d — h!-l'.a‘.- - J*
(ba-d)* — (54.1"&" J*)(b*_j a;-d,) (-4
E
(ua)” —  (u,.; a;) (Ug.; a;)
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Since we hooe to minimize the expected sum squared error we

will take its derivative with respect to each of the independent variables

a and set each one equal to zero, Hence

(111-5)
+E (i,)[“l-b ® . & 45)
This can be expressed in more compact form
-3 - R'i'i' b k-.l
(I11-6)

w‘-* VJ“ - u -‘ u*.‘-
having noticed that R and W thus defined are autocorrelation matrices

or Toeplitz matrices, The expression simplifies to:

0 =[EUAR,+EEIW, RE) gy b, ]a“

:'.[ " .0_3;-»0;,;%}[ " %Ei (1m1-7)
T Jesesa)l - ]

where 6;5 is the Kronecker delt. ,

|Utilizing the symmetry of the quantities in the left hand

square brackets we can write:

[E (A*R;. P +E(§‘)V ]‘m E(#)by s dy (111-8)
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These equations can easily be rewritten as a matrix
equation in the same way as with the spiking filters.

If the desired output d, were Just the signal bk
possibly with some lag or some negative lag (prediction)
then the right hand side no longer contains the waveform
bk but only its autocorrelation. This would be the
specialization to Levinson's problem.

We now give some examples writing equation (III-8)

in matrix rbrn.,

Example 1 The signal waveform by = (2,1). The signal
arrives with a frequency which gives it an average power
cnf « The noise is white and has unit power. The filter
should have 3 terms. The desired output is a spike after
unit delay. d = (0,1,0,0). The normel equations become

J5 20 1 o 0]) {% '
o [a 5 a|*"]o 1 o]y {a, = {2
0 26 o 0| a 0

Example 2 Like example 1 except the desired output is
the same as the signal input with no delay. The normal
cquations are like example 1 except the right hand side
becomes the column vector (5,2,0)T.

Example 3 Like example 2 except that the signal should
be predicted by one time unit. The normal equations are
like example 1 except the right hand side because the
column vector (2,0,0)T.

IV Matched Filter

Suppose one is given an autocorrelation function of
a noise process and also a signal wavelet., It is desired
to detect the arrival of the signal wavelets in the pre-
sence of the noise. The method %0 be used is to filter
the incoming mixture of signal and noise and then say that
signals arrive where there are maximums in the output.

T
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How should the filter be designed? If the noise were white
and the filter memory wavelet had unit energy, then the
power output of the filter with noise as input would be
unaffected by the frequency characteristics of the filter.
Then the filter need concern itself only with the signal,
Thus the introductory example (Section I, no. 4) gives

the whole story when the noise is white. The result is
simply that the signal filter coefficients are just the !
time reverse of the wavelet and the actual filtering
operation then amounts to crosscorrelation of the signal
wavelet with the incoming data. If the noise is not white 1
we must do something a bit more complicated.

Using the same notation as the previous section, the
poweri output of the filter with noise input will be the
quadratic form E(§?) ui’_.‘ﬁ,d,. We can choose the magni-
ficatton constant of the filter to be such that this power
is unity, This leads to the constraint

E (s ) U-,-; o a; = | (Iv-1)

For simplicity we choose to make the filter have
the same length as the signal wavelet and we choose to
have the maximum output come when the wavelet is exactly
in the middle of the filter, i.e., the nth lag of the
convolution where both § and © have length n. Thus we
maximize

Q; bn-i

(sum on 1)

subject to the constraint equation (IV-1). Using Lagrange
multipliers one maximizes

max [ a; by, +ANE(E)U,.; a: a-.;] (1v-2)

J e T
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We have diffeientiated terms exactly like this in previous
sections, Lctting'Br represent the time reverse of the

- signal wavelet and U represent the noise autocorrelation
matrix, we write the result

0= B, + aNE(EIUZ (1v-3)

solving for § we get
r S U”tr L aNE(5?) (Iv-4)

We can usually ignore 2 N E($") since 1t just amounts
to a magnification factor in the filter.

In practice one may prefer not to invert the matrix
in (IV-4) or solve the simultaneous set (IV-3) since thers
is an easy way around it. One might simply prefilter the
data to whiten the noise and then filter with B,. The
results would be similar, the difference arising from end
effects.

More is known about the matched filter. Suppose one
wants, to choose a threshold value for the output and
annouhce "signal" whenever the threshold is exceeded and
"no-signal" when it is not. Then one would like to maximize
the probability of guessing correctly. It can be shown that
if the noise is gaussian, then the matched filter and pro-
per choice of threshold will maximize this probability.

V. Maximum Energy Sum Filter

Consider the following physical problem. A trans-
ient signal waveform is sent through a dispersive media.
The media is such that it may badly disperse the wave
without altering its spectral content a great deal. Ve
know what spectrum to expect of the signal and we Jnow the
spectrum of the ambient noise. We would like to design an

————— —— et s,
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apparatus or procedurs to enable us to make a best guess
as to when the signal arrives. The matched filter is not
the answer because we do not know the exact signal shape,
only its spectrum. The spiking filter is not appropriate
for the same reason. The Wiener-Levinson filter tries to
make the output look like the signal input. In this case
we don't even know what the input waveform should be, we
would Jjust like to try to decide approximately when it
arrives.

A solution to this problem is to design a filter
which puts out lots of energy when the signal comes in
and minimum power when only noise comes in, Thus our
decision would be based on a system like the following:

filter| squarer _Qutput
nolise | —

We would search for the time t, ¥hen the output was
maximum and then we would say that signal arrived between
time t. and time tn-T.

Taking this model then, we seek to maximize

)\ energy output of filter due to si 1l in interval T
- — expected power output due to nolise

(v-1)

Notice the similarity of this problem to introductory
example 4. It will be seen that it turns out to be exactly
the same if the noise is white.

Since we are interested in a computer application,
we again specialize ourselves to filters and signals which

are discrete in time, and spectre which whose autocorrelations

are of finite time duration.

angathaniar
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Using the finite autocorrelations of the signal and
noise we define two wavelets bi' a signal wavelet, and Uy
8 noise wavelet. This can be done be the procedures des-
cribed earlier. These two wavelets may have different
phase spectra than those of our physical problem, but they
will have the correct autocorrelation. Thus we begin with
the definitions used earlier:

8, = "ideal" filter coefficients (a, = 0 ir 1€0 or iDM)
b, = signal wavelet (b1 » 0.4f 10 or iPN)
u, = noise wavelet (v, = 0 1 1<0 or 1DN)

‘1 = white light series associated with noise process
3‘ has variance 1.

We use subscript summation notation; the expression
a . .
J b&-a

has an implied summation over all values of the repeated
index J, J goes from minus to plus infinity. Thus the
given expression is a vector with free index k and is the
complete transient convolution of a and b,

Expression (V-1) for A\ with this convention now
becomes

A= Ay 5!::1“’iiatzi
4',. u}-m Qn ‘lt—n

(v-2)

We notice that a quantity like bk- ka-i is the
autocorrelation matrix Bi- J of the signal b1 and denoting
likewise U, _ ;" tJJ_1 as the autocorrelation matrix of Uy,
the expression (V-2) becomes

\ = Bi-y 2 &,

(v-3)
un.n dm an
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To try to maximize this ratio, we take its partial
derivatives with respect to each of the independent variables
a‘ and set them equal to zero,

pedh. (atnaidy (B e ine
4 (Ten 2 Qn) (v-4)

Multiplying by (Um-n.m‘n.) we get

0 ._..a%.; (B;t jaca;) - )\3%’ (Lnn B 2) (v-5)

The derivative operations are the same in each term,
working only with the first we get

o - ;24 ; o
da, (8:.;2:a,)= B;.; (“‘3'3:' *a 5-37)

= Bi.; (@i, +a,; &)

where§; ;18 the Kronecker delta. Now utilizing the
symmetry of Bi- ] and the fact that i1 and J are dummy vari-
ables, this becomes

=B ,a;, +8,;a;
St B ga; (v-6)

Applying this result in equation (V-5), we obtain

0 =84~ NU;_,a; (v-7)

e e T R,

e e e
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This is the generalized eigenvalue problem. Further-
more, since B and U are positive definite®*, this problem
is kmown to have M distinct eigenvector solutions for the
a; assoclated with M eigenvalues A me The eigenvalues
must be real and positive. Assuming that the eigenvalues
are distinct we select for our solution a, that eigenvector
which is associated with the maximum eigenvaluve. We note
that eigenvectors are destermined only to within a scale
factor. This corresponds to the physical fact that the
energy povwer ratio (V-1) will not depend on the amplifica-
tion of the filter.

Looking back to equation (V-2), we see that the numer-
ator is the energy in the complete transient convolution
of a, and by, and denominator is likewise for 8, and u,.
The energy in the convolution of two transients is well
nown to be the integral of the product of their energy
density spectra. .Theretore. if we were able to find
another wavelet a, which had the same amplitude spectrum
as ai. we would have another solution to our maximization
problem.

From the z-transform analysis described in Section
II, we know that many finite wavelets may have the same
spectra. These different wavelets are obtained (by a
method due to Wold and also F‘Jer) in the following way:
1) compufe the autocorrelation of the given wavelet.
2) Pactor its z-transform. 3) Its zeros must occur in
pairs, specifically if 2, is a zero, then 1/21 is a zero.
Select either one from each pair and form (z-zi)(z-zz)(z-z3).
This is the z-transform of a wavelet with the same auto-
" correlation as the given wavelet. 4) Normally there are
2" possible different wavelets. By the reasoning of the
preceding paragraph, these should all be solutions of our
maximization problem.

This is an apparent contradiction to the fact that

the eigenvalue problem (V-7) is known to possess a unique

¥1o see that B 1s positive definite recall that 158 is &
quadratic form reprnsonting the onnrgy of output when tae
wavelet B goes into the filter 4. Clearly this energy is
positive for any real values of a. This means that B is
positive definite.

L% e

Ce we ona
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eigenvector solution: 8, for the maximum eigenvalue A max’

The ocontradiction is resolved if and only if all of the zeros
of the z-transform of each solution eigenvector lie on the
unit oircle. Then the zeros z, equal their inverse conju-

- gates 1.e.
Z;= l/—?_‘.

and the 2" aifferent selections of one from each of the n
pairs of gzeros all generate the same wavelet.

There is a curious consequence of the fact that the
zeros of the z-transform of this filter must be on the unit
circle. It is that the eigenvectors must be either symmetric
or ansisymmetric (for example (2,3,2) or (4,0,-4) respec-

. tively). Whether it is symmetric or antisymmetric depends
upon whether there are an even or an odd number of zeros
. at the point Z=l.

This is a simple consequence of the fact that the
elgenvectors are real, and any roots of the z-transform
which are complex must occur in conjugate pairs. By the
main theorem, they must also lie on the unit circle. Por
the root ¥, = A+ L we may then state

a8 =]
and
(2-2)(2-R) =(2-a-ip)(Z-a+ip)
: | = 2*—aaz + (@™ 8*)
. =2*-2p2 + |

Hence, the coefficients of the second order and the zero
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order terms in z are identical for all X and 3 and the
wavelet is symmetric. The same is evidently true for all
the complex roots. The net convolution of all these
symmetric wavelets is symmetric. Hence, the eigenvector
would have to be symmetric if all the zeros were complex.
However, we 2lso have the possibility of zeros at two
places on the real axis, -1, and +1. The -1 corresponds
to symmetric wavelet (1,1), and the +1 corresponds to the
antisymmetric wavelet (-1,1). Convolution by the first
leaves the eigenvector symmetric, but an odd number of con-
volutions by the second leave the eigenvector antisymmetric.

Numerical Example
Let

by = (3, -1,a)

u; = (4 2,1)

and
a1 10 4] iy =5 (]
U= lio at w B=|[|5 1% =5
4 0 al 6 =5 4
solving

[B - )\U]O. =0
we get

>\“=2..7¢L‘i3-
)\,_= 4706 »n =0, 9, -1)
A, = 259 = (1, 122y, 1)

et el e T St
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The eigen-values are distinct. The eigenvector
solutions for the maximum and minimum eigen-values are seen
to be symmetric, and the remaining eigen-value has an anti-
symmetri~s eigen-vector. The zeros of the z-transform of
the eiy:ri-vectors are then computed and plotted:

F'o. (2)= 1= 19924 B+ ™ m (THER+. 0082 - BN 79e2=0b8 2 = R)
Rl®)= (1-3" = (1=3)(I1¥2)
R () = I+ 112342 43" = (= ena 4630 - )R 4OL-3)

The magnitudes of all the zeros are seen to be
equal to 1

Amay

middle

B. Maximum Energy "Sum Filter from Spectral Considerations

We consider the same problem of determining a filter
a, of finite length in discreet time which is optimua in
the sense that it maximizes the ratio:
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1= energy output of filter due to si .
expected power output due to noise

This time we solve it in the frequency domain rather
than the time domain, Define the filter energy spectrum
as A(W), the signal energy spectrum as B(W) and the
noise power spectrum as G(W). Then the above ratio may
be written:

{7 Aw Bt de
5 AWG ba

1=

(v.B.1)

If the maximum of this ratio is finite then it is
necessary that for perturbations in A(G)) we will have I = O.
Since A(W) appears in both numerator and denominator
it is clear that a multiplicative scale factor in A(L)
will dbe unimportant, in other words we can choose the scale
factor as we wish. In fact, we can choose it so that the
integral in the demoninator is some constant, i.e.

| = f: A(w) G (W) Aw

(v.B.2)

Then the problem can be restated as maximizing the
numerator

+r
= Alw) B(w)aw
0 SS‘ r (V.B.3)

subject to the constraint equation (2).

This is a classic problem in the calculus of varia-
tions (see for example Hildebrand, Methods of Applied Math,
section 2.6). The prodedure is to maximige the quantity

e -
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i-
1= (" AwBeRe - X[ Ao b
s -

(V.B.4)

subject to no constraint. And then later X can be

determined by (2). )N 1s called the lLagrange multiplier.
Thus we solve the problems

S
0 = §|_, (BuI-A6)Aw du 551

Since we are dealing with functions in discrete time,
the spectra in equation (5) will all be periodic with
period 2 (Nyquists). The spectra are also even functions
of W, Therefore, A, B, and G can always be written as

Aw) = &, + %u,. tos W

L

B(w) = é. "’a"z PnCoenw

Gw) = ¥,+ 3—3 ¥, coenw

1

(V.B.6)

Fourier cosine series whose coefficients, the Greek letters,
can be recognized as the autocorrelation functions of the
respective time functions. The limit on the summation for
A(W) 1is finite because the filter a, was chosen to have
finite length and hence 80 must its autocorrelation, We
apply these forms to equation (5).

+r
o=§ S_ r[p' ‘\8,*&.2.(9. M) coe nw]. (v.B.7)

[0(,1- * g“. cﬂhb]du

LAY |
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The variation is intended to be over the correlation
funection “i’ of the filter impulse response a,. The “‘
are not, however, allowed to be varied arbitrarily, they
must only be varied in such a way as to keep the energy
density A(Q)) positive for all W . In other words an
arbitrary selection of the numbers & may not really be
an auvtocorrelation function. Therefore, we will express
the O({ in terms of the impulse response a, and do the
variation in terms of the‘ai instead, because any set of
numbers a is a valid impulse response. The expressions
relating °‘& and a, are:

“o = .g + ‘i + ag '.' e o o o o @ + af‘
q 2 = ‘0.2 + 8133 + 32‘“ + o o + aN_aaN

) (v.B.8)

Oy = agay

Performing the variation merely amourits to writing
the Buler equations in terms of the a,, the a, being
compleyely independent variables. Our integral is of a
particularly simple form, therefore, we can obtain greater
insight by performing the integration directly. Then we
can set the variations (derivatives) with reapect to the
a, equal to zero.

The integrand is the product of two cosine series,
Using the orthonormality of these cosines over the interval
+ T to - equation (7) becomes on integration

N (VMRS JUENAEN

= (Pe-NR$T- +1’§, (Ba-NB)TZE a9
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It is noteable that the formulas (9) no longer
contain the infinite sum which is in formula (7). This
important result will be referred to later. It means
that only N lags of the signal and noise autocorrelations
are needed for the solution, N+l being the length of the
impulse response of the filter a; which we are constructc~
ing. .

We now differentiate the O{y, in equation (8) with
respect to the independent variables a 3 This may be
written: :

o]

n .
343 IJ_n + aJ+n
where 0& J &N
o&né&N
and a,=0if1 0

ay=0if 1 N

We-now insert this into formula (9) and reorder
terms according to increasing subscripts of aJ. This
step, although it is complicated amounts to straight-
forward symbol manipulation, The final result can be
written as the following matrix equation:

o B, - " ®n| Y, ¥ W\ (2

'pl Po . -N‘ ?p x. . Q.. -

’ ) (v.B.11)

L_p"‘ Po L‘” xo_l Ay

-

Thus we are led to the same result as the time domain
considerations (V-7). One wonders whether there might

e ot € e ey AR+ e S
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be a useful connection here with the general theory of
eigenfunctions as there were useful results of connecting
least squares filters with the theory of orthogonal
polynomials, '

It is posaible and seems likely that some of the
statements about decision rules, maximum likelihood, etc.
which are made about matched filters in Gaussian noise
could also apply to the maximum energy sum filter¥,

This is a topic which does not appear to have been inves-
tigated,

¥ This possibility was suggested to the author by both
Professor E. M. Hofstetter and Professor T. R. Madden.

s
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SECTION VI Pirst Motion Spiking

A. ObJect and Motivation

The direction of first motion of the ground at a
seismic station has received considerable attention in
nuclear detection. The essential idea is that the first
motion resulting from an explosive blast should always
be upward and away from the epicenter while this would
probably not be true for more than half of the time for
naturally occurring seismic events. This criterion has
been shown to be a reasonable one for the Logan and
Blanca test shots for distances less than about 700 km
(Romney, 1959). The primary difficulty in considering
seismograms taken at greater distances was the reduced
signal-to-noise ratio further aggravated by the fact
that the first motion was in almost all cases smaller
than the immediately following oscillations. On some of
the seismograms taken at greater distances the first
motion appeared to be in the wrong direction despite a
fairly strong signal-to-noise ratio. The motivation of
the experiment to be discussed is that perhaps the osciljia-
tions immediately following the first motion also contain
information about the polarity of the first motion, but
contain this information in some latent way. This idea
is not new, but no effective method has yet been applied
to extract this information.

A mathematical technique for extracting this type
of information 18 the spiking filter,

B. Method and Philosophy of the Experiment

First a wavelet, the first motion and several sub-
sequent wiggles, is selected from a relatively near-shot,
low-noise, seismogram. Then a filter is designed such
that with the wavelet as input, it will produce little
or no output before and whilie the wavelet is entering the
filter, a large positive spike when the wavelet has fully

R
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entered the filter, and little or no output thereafter.
The filter is also designed to have little output when
naturally occurring microseisms are its only input. 1In
practically all cases, a filter cannot be designed to do
these simultaneous tasks exactly, but the one designed
does them in the least-squared-error sense. That the
ultimate error will be sufficiently small for practical
purposes must be tested computationally.

The filter 1s then applied to a seismogram with
& poorer signal-to-noise ratio which may be at a differ-
ent orientation to the seismic event and ag a greater
distance. If the filtered seismogram consists of low
level- noise preceding the abrupt arrival of a spike of
positive polarity we might then infer that the direction
of first motion is the same at the second station as it
was at the first., If the impulse had negative polarity
we would infer that the second signal had undergone a
180° phase shift with respect to the first signal. If
no impulse showed clearly through the background noise,
we would infer that this experiment was not successful.

To be more precise, in least-squares fitting to
a positive impulse we are assigning a polarity to a
clear first arrival wavelet; then we produce a filter
which can be applied to wavelets from other seismograms
of the same event which assigns a polarity to each of
these,

Finally, we are in a position to examine the
possibility that the polarity is the same at all orien-
tationa from the source. If it is, we infer that the
source has rotational symmetry and is probably rot of
natural origin. If the polarity on the first clear
arrival wavelet is assigned according to the direction of
first motion, and if wiggles subsequent to the first
motion really do contain latent information about the
first motion; then the hypothesis tested by this experi-
ment is very similar to, although not exactly the same
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a8, the hypothesis that the first motion caused by a
nuclear explosion must be up and away at all source orien-
tations. To point out this difference more clearly, con-
sider the seismograms mentioned earlier on which the first
motions appeared to be in the wrong direction, Possibly
the first motion was in the right direction and obscured
by the noise, but it might actually have been in the
wrong direction. Even if it was, its polarity as deter-
mined by the first few wiggles might have been the seme

as that of other seismograms of the same nuclear event.

C. Choice of Parameters

Several of the seismic records from the Logan under-
ground nuclear explesion were picked by eye, that is, the
first motions were identified approximately and the first
3.5 to 4.0 seconds of the seismic trace were considered
to heithe easence of the signal wavelet. The section was
then tapered smoothly to zero on each end. The exact
way in which this was done is depicted in Figure 1. Only
the shorter of the two wavelets shown (the bottom in each
frame) was used., The wavelet length, about 3.75 seconds,
was selected because it is long enough to include the
requisite "first few wiggles" but not so long as to make
the solution of the simultaneous equations excessively
time consuming. A sixty point inverse wavelet which 1is
three seconds in length at our standard digitization rate
requires about one minute of IBM 709 time to compute.

The choice of a method of tapering the ends of the
wavelet was rather arbitrary. It was motivated by two
considerations: 1) The time of the first motion arrival
could not be determined exactly, and to be sure that the
first motion arrival was included, about 3/4 second of the
seismic trace before the apparent arrival was included in
the wavelet. 8ince it was also felt that the wiggles
nearest the first motion probably contain the most infor-
mation, wiggles further away were also tapered in amplitude,
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2) If the wavelet were just extractea from the seismogram,
it would be likely that there would be strong discontin- '
uities in both the function and its derivatives at these |
ends, It would be undesirabla if the spiking filter
turned out Yo be particularly sensitive to these artifi- .
cially caused discontinuities; hence, they, too, were
removed by tapering.

To select the coefficients of the spiking filter, ;
the following quantity was minimized: *

sum of square error =
(delta function minus the convolution of the filter
with the wavelet)2
+# 2(the convolution of the filter and the noise)2

The noise referred to in this expression is the
microseismic noise which Just preceded the arrival of the
signal wavelet, The 2 in the second term on the right in
the above expression was selected on the basis of results )
of earlier crude computational experiments. The chcice
of the delay in the delta function in the first term on
the right in the above expression was made such that the
filter would be acting on all of the terms in the wavelét
at the time of the filter's spike output.

The length of the spiking filter was chosen to be
equal to the length of the wavelet, not because of theoret-
ical necessity, but because it was thought, for various |
reasons, t0 be a reasonable choice.

The choice of practically all of the parameters in

the above discussion is somewhat arbitrery. They were all .
selected initially on intuitive grounds. Some have besn
more or less justified by simnle couputational tests, others ‘.

remain to be investigated.

D. Results
As a check on the computations and a check that the
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sum-square-error would be small enough to make the scheme
useful, the spiking filter was applied to the seismogram
from which it was derived. This is presented in the upper
left and lower right frames on Figure 2 and Figure 3, It
is seen that the noise preceding the first motion is in
all cases reduced and that the first motion is condensed
to a neat spike, Just as it should be. The "hash" which
is near the beginning and end of some of the. convolution
treaces is the result of applying a filter onto the ends of
a finite segment of data.

The conclusion to be drawn from the firat part of
the experiment is that a least squares error filter can be
determined with the resulting error small enough that it
will be useful in simultaneously reducing noise energy
and condensing a particular waveform into a spike.

The next part of the experiment was to apply these
spiking filters to other seismograms, The spikes still
seem to be present although they are almost down to the
level of the noise. This is shown in the lower left and
upper right frames in Figure 2 and Figure 3. In some
cases the noise before the first motion appears to have
increased after filtering. This is because all of the
traces on the figures were scaled to have a certain maxi-
mum amplitude amenable to scope display. Since the spike
was always smaller in cases when the spiking filter was
applied to other records, the resulting displays were
amplified. The splkes generated from the application
of spiking filters upon other seismograms are not clearly
distinguishable from the noise in all cases. The conclu-
sion to be drawn from this is that the first motion
wavelet loses much, but not all, of its character in going
from the station at 1800 lam to the station at 1900 km.
This must be qualified, however, for the loss of character
might not be quite as great as it would first appear; it
should be remembered that the wavelet as determined at one
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station also includes the noise at that station, hence even
if there were no change in the wavelet at all during trans-
mission from one station to the next, there will be a
double corrupting effect in this computation due to the
different noise at the two stations which cannot be com-
pletely eliminated.

F. Posaible Modification to and Experimentation on this
Mathematical Technique

The operation of the spiking filter in this experi-
ment had the undesirable effect of increasing the high fre-
quency noise. As a result of this, the filtered data looks
much more spiky than the unfiltered data making it more
difficult to observe a true spike in the filtered data.
Heuristically the reasons for this are as follows. The
energy in the spectra of the signal wavelet and the noise
tends to be primarily at low frequencies. If we were
ignoring noise and considering an infinitely long inverse
wavelet, its spectrum would be Just the inverse of the
spectrum of the signal wavelet and in this case would con-

tain very high frequencies. Since the filter is also expected

to reject noise of low frequency, the result is a filter
which is very sensitive to high frequencies and hence high
frequency nolse. An important conclusion of this experiment
is that something should also be done about high frequency
noise. The analysis suggests how to make the filter insen-
sitive to any type of noise of known autocorrelation.
Another approach is not to require an impulse to be the

output of the filter, but instead, some wider burst. Reason-

ing again from the limiting case of filters and signals of
infinite extent, this would be advantageous because the pro-
duct of the spectra of the filter with that of the wavelet
must equal the spectra of the desired response. By desiring
a response of a wide burst instead of a spike we may expect
to get a filter less sensitive to high frequency noise.

AT SN T
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G. WMore Possible Applications to Nuclear Detection

One could try the following different, though similar
experiments:

1) On records taken at the same distance and at the
same station try filters generated from a wavelet from one
nuclear event on a seismogram from another nuclear event.

2) On a record with a clear first motion, compute
the spiking filter and then convolve the whole record with
it, in search for later arrivals of the same waveform. (If
later arrivals are detected their time delays can be deter-
mined to the accuracy of the digitalisation sampling. S8ince
this is 1/20 of a second, it may lead to improvements in
depth determination accurecies.)

SECTION VII Prediction Error Experiment

I. Philosophy

Microseismic noise can be predicted. For example,
it was found that given past values on our noise seismograms,
one can easily predict 1/10 of a second into the future
with an error in power of less than 5%. Suppose we form a
new signal by subtracting the predicted seismogram from the
actual seismogrem: This new signal is called the prediction
error signal. The amplitude of the prediction error signal
is expected to be small. If, however, at some time in the
microseismic trace a real signal arrives, it cannot, of
course, be predicted from the noise. Hence, at that time
the prediction error signal should suddenly attain a large
amplitude. For example, during the digitization of our
seismograms one ‘of the timing marks was acclidentally traced.
Naturally the timing mark could not be predicted on the
basis of the noise which preceded it. The result was a
large prediction error at that time. This is depicted in
Figure 1.

The mathematical theory of predicting stationary time
series at unit prediction distance also shows that the pre-

diction error of a pure noise signal will be a white-light
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series. The arrival of a signal, if it has a different
spectrum than the noise, will result in non-white series.

Thus a person attempting to find & seismic signal
arrival by examining the prediction error will look for:

1) large increase in amplitude

2) change in white character of trace.

There is another peculiarity of the prediction error
signal. 1Its power spectrum is independent of the seismometer
and recording system. This is true both before and after
P wave arrival. Before, the spectrum is simply white. After,
it is a function only of earth motion power spectra.

Another property of the prediction error trace is that
the ratio of power after to power before signal arrival must
be anrimprovement from the original seisnogram.

All of these properties w'.ll now be derived.

II. Mathematical Derivation .
The concept of prediction is treated in greater
detail elsewhere (Robinson 1954). The formulas are briefly
derived here in an heuristic manner.
First we make the following definitions. Let
s be the given stationary series
W be the one sided wavelet with the same
spectrum as 8, of length n
X be the white light series which when
convolved with w gives s
v  be the wavelet which is inverse to w of
length m
d Dbe the predicted s at d time intervals
in the future
R or n or both may be infinite.

Let negative subscripts refer to the past, the zero sub-
script to the present, and positive subscripts refer to
the future., Let "#" denote convolution. The white light
series x can be generated for all past time, up to and

e i s+ B o
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including the present instant by the convolution ol s with
\'H i.e,,

- "&‘g‘ﬁ‘w"’*‘ = Swv (1)

The white light series corresponds to arrival times
of the wavelet w, The situation is depicted in the sketch
below,

e

To find the predicted value of the series at the
time (now+d) we sum up the effect of all wavelets arriving
in the past. Those wavelets which may arrive betwsen now
and the time we are predicting will contribute to the
error of the prediction.

Referring to the sketch above, our prediction now
Py+ for the value of s, at the future time 1=d is thus
written:

Fo ) = Xowia + Xoy Mooy + X aWgoa + oo

RS
a &. 0.
7 S ,Wu

More generally, the prediction p,(d) for the value
J
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of the series 8444 at time Jj+d is written:

RO ',i B vae
HET)
Ve write this symbolically as

P(L) = Xwv,

where Yo is the wavelet w, truncated of its first d terms,
Utilising (1) and the commutivity of convolutions we get

P(l) 2 Sk (viwg)

and we can identify v’wt as the predicting filter.
The prediction error oJ is defined as

eJ(d) = actual series - prediction of series.

It i1s a function of the prediction distance d. We
will now show that if dm=l, the operator which generates
eJ(l) from 8y takes on a particularly simple form, and eJ(l)

must be a white light series.
Denoting z-trancforms by capital letters, the z-trans-

form of the truncation of L1 corresponding to d=1 is
‘((l)‘ W,

The z-transform of the predicting filter is then

V) (wiz)- W)

The z-transform of the prediction error filter is
Juat

[ =i (WD) - W)
= | = V(D) W)+ We V)
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But w and v are inverses and also, W, = l/Vo, hence
the g-transform of the prediction error filter ls

=]-|+ j<z V()

= 1A V@)

Hence, the prediction error filter is Just the
inverse wavelet, scaled so that the first term of the
filter is +1. 8ince the prediction error filter is the
inverse to the wavelet of the stationary series, it must
whiten the series,

What happens to the spectrum if a signal arrives
somewhere on the noise record? Letting S denote spectrum,
the condition that the noise be whitened is:

8 (earth noise) 3 (seism. system) S (prediction error filter) = 1
The spectrum of our final graph is then:

S(graph) = 8 (earth signal + noise) S (seism. system) S (pre-
diction error filter)

Combining the above two exp~es:! na we get:
S iearth.ﬂgggal +_noise)
S (graph) = earth ~dise)

which 18 independsnt of t!:e iransfer function of the seismo-
graph.

This derivation contains some hidden mathematical
assumptions which should be valid in any real case.
(Seismograph system is linear and dissipative. Ground motion
satisflies Paley-Wiener criterion.)

The proof that the prediction error filter must
improve the signal-to-noise retio is omitted. It is based

rx oy

e et A S At <
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on the fact that the prediction filter can be derived from

the point of view of minimizing the variance of the difference
between the predicted and actual noise, and that this vari-
ance must be higher for any signal with autocorrelation
different from that of the noise,

III. Computational Method

One knows approximately the signal first arrival time
on all of our seismograms. In some cases it is directly
observable, in others one needs to use travel-time curves.
The autocorrelation of the noise before the first motion is
first computed. From this the inverse wavelet is computed
by the method described in our previous report Appendix F
part III. This is a least idquares method. The length of
this filter was chosen to be 7C points. This is near the
limit of computational feaaabilitj*bf least square proce-
dures at the present time. A method for computing longer
prediction operators was programmed but not used because in
most cases we did not have a very great amount of data
digitized before the first motion and also because exper-
ience has shown that great increases in operator length do
not improve predictability proportionately. Our data has
1/20 second ¢igitization intervals, however, we have dis-
covered that our seismograms have little energy in the
spectrum above 5 cps. Therefore, only alternate digitized
points were used. The resulting prediction operator length
1s 7 seconds.

The finiteness of this operator caused our actual
output to deviate from the theoretical output in the follow-
ing way: The operator cannot succeasfully use noise with
wavelength of the order of 7 seconds and longer in predic-
tion, since it is only 7 seconds in length. Reference to
graphs in our previous reports indicates that 5% to 20%
of the power in the spectrum may fall within this range.
Although this low frequency iz apparent in some of the

% Son I»Jc improvement see section I
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prediction error traces, the visual quality of the records
is not impaired, however, due to the very lowness of this
frequency.

IV. Results

Results are presented in the form of the following.
figures. The results are good in every case and sometimes
quite remarkable.
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Figure VII-O The p-wave 18 clearly located at 425
seconds. This is an example where all but perhaps a
skilled seismologist would not be able to pick p from
the original record, but where it is quite clear from the
prediction error record.



68

SECTION VIII: Travelling Auto-Spectra of Nuclear Shot
Seismograms ,

A travelling spectrum is a succession of spectral ’
estimates of a time function taken at successive time
intervals. Thus it is a function of both frequency and
time. This concept, although 1s 18 a mathematical
amalgamn, may be useful in the analysis of non-stationary
time series where the successive spectral estimates change
in some physically meaningful way.

It was not certain what could be learned by taking
the travelling spectra of seismograms of p- and s-waves
from nuclear shots since simple theory predicts no dis-
persion for these phases in a homogeneous isotropic
medium., But considerable change of waveform (i.e. dis-
persion) 18 known to occur in the real earth. Therefore,
although one has no detailed ideas of what information
it might be able to extract in regard to nuclear detec- |
tion, it was thought there might be value in computing
the travelling spectra, especially sirce by utilizing.a
special technique (Simpson et al., 196la, Appendix J)
it was possible to compute a travelling 24-point spectrum
of a typical seismogram on the IBM 709 in the amount of
time it takes to read this sentence. In fact, it is too
easy to use the computer to generate many more numbers
and curves than are readily interpretable. For the first
investigation travelling spectra was computed for all
the digitized data which was available,

Since the travelling spectrum is a function of two
parameters, frequency and time, and since our program can
compute values almost as fast as they can be printed,
there was a significant problem in data presentation.

I took two approaches. The first was to print twelve
numbers per line of printed page, these being the spectral
amplitude estimates scaled to a maximum of 5, rounded to
an integer, and then taken to the 10th power. The result
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is intended to resemble 13 bar graphs running down the page,
representing spectral estimates at 13 frequencies as a
function of time. Time of p-wave and s-wave arrival is
indicated. The second approach to the data presentation
problem is to make these bar graphs on the scope. This
allowse finer presentation of amplitude.

A selected few of the results are presented in the
figures, Some things are notable. On Figure II-3-1 is
presented the travelling spectra from two nuclear shots
over almost identical paths. The spectra are similar,
but far from being identical. On Figure II-3-5 the s-wave
arrival is apparent on the travelling spectra as an
increase in high-frequency energy. On Figure II-3-6 a phase
arrival is noted in which there appears to be some disper-
sion., This phase has not yet been identified.
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SECTIOGN IX Piltering for Signal-to-Nolse Improvement

Abstract

A filter is derived which can remarkably increase
the signal-to-noise energy ratio on seismic records. In
the examples considered the ratio was increased by
factors of up to about 20, The construction of this
filter 18 based on agsumptions about signal spectra and
noise spectra. The filter distortion, however, is severe
and the method is not expected to be useful when applied
to first motion studies. Thus the method should be use-
ful for determining the existence of very weak arrivals.
A possible application of this is8 in the detection of
Leet's (Leet 1962) "lonesome P" phase. This application
was tried but results were inconclusive due to inadequate
relevant digitized data. Other experiments, perhaps
less directly relevant to nuclear detection, gave excellent
results.

I. Introduction

In the previous subsection we have seen filtered
seismograms in which the signal-to-noise ratio was sub-
stantially enhanced. The filter in that subsection was
based only upon a knowledge of the noise power spectrum.
In many geophysical problems, some knowledge of the signal
may reasonably be assumed. One might make the relatively
weak assumption that the energy-density spectrum of the
signal is known, or one could make the stronger assumption
that both amplitude and phase spectrum (and thus the wave-
form) were known. It is advantageous to make the strong-
est realistic assumption possible because -then the solution
filters are "tailor-made" to the problem. It is dangerous,
however, to make strong assumptions which are not justi~
fied, since we may not know how sensitive our solutions
will be to small deviation from the assumptions. On the
other hand, any sensible assumption is probably good if
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the solution 18 not particularly sensitive to deviations
from the assumption.

II. PFeasibllity Experiment

In the examples oontidered in this subsection we
assume knowledge only of the noise spectrum and the signal
spectrum although the method which will be applied is
generally applicable to the stronger assumption of noise
spectrum and signal waveform. The mathematical method
is to take our assumed noise and signal spectra and
construct a filter which is optimum in the Wiener sense.
The details of the method are explicitly developed in
Appendices B and C. The general idea is that the square
error will be minimized, error being both 1) filter out-
put when the only input is noise and 2) filter output
other than signal when only signal is input. I% was
further assumed that at a given seismic receiver noise
is present most of the time and signal is by comparison
rarely present,.

One might wonder how sensitive this filter is to
small perturbations in the assumed signal and nolse spectra.
The answer 18 that it depends upon the spectra. This can
be seen by examining Figure ( J¥’-1) in which 18 displayed
the spectra from one of the test cases. The filter, as
might be expected, has greatest spectral components in
the regions of high signal-to-noise ratio. It can be
noted that high ratios at frequencies where both signal
and noise have low energies do not strongly affect the
filter. Thus the filter seems to have a sensible Spectrum
and although it is peaked rather sharply, it does not
appear that any minor alteration in assumed signal and
noise spectra would cause major alterations in the filter
spectra.

The particular filter used in the examples tries to
reproduce the signal efter a 3 second delay. To facilitate
comparison, however, the time scale was relabled in such
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a way as to remove the delay. Distortion of the signal
{caused by trying to suppress noise) now may cause
precursers to the signal as socn as 3 seconds early. In
fact, the filter will have considerable distortion since
vwe have set up the problem 8o that the filter should
suppreses noise and then we have also sald that noise will
be the most frequent input. Thus the filter will try
very hard to suppress noise, and much signal distortion
will almost always result. For this reason the filter is
not a good one for first motion studies.

This part of the experiment is based on the follow~
ing assumptions:

1) The spectrum of a p-wave signal from a nuclear
blast arriving cn the LEFT-RIGHT component will be similar
to that on the more clearly observable UP component.

2) The microseisms noise spectrum does not change
slgnificantly from the minute before to the minute after
a p-arrival.

The results in the particular examples studied which
are displayed in Figures ({ﬂEé-2 to IX~-6) indicate that
these assumptions cannot be too bad. In them the signal
spectrum was determined from the first 25 seconds of p-wave
on the vertical component. The noise spectrum is computed
from the horizontal component before the p-arrival time.
(This time is known from the vertical component.)

III Detection Experiment

In the prediction error experiment (Section YII of
this report) one of the prediction error filters increased
the signal-to-noise energy ratio to such an extent %that
the p-wave was easily recognizable where it had previously
required a good deal of imaginaticn to recognize (see
Figure WEL-5). Since this phase is what Leet calls
"lonesome-p" (more than 2500 kilometers distant and no
observable s-waves or surface waves) and its presence may



79

be quite significant for nuclear detection we considered
the general problem of trying to increase our ability teo
detect Just the existence of a signal in a very high
relative noise level. This led to an elaborate mathe-
matical scheme written up in SECTION V. The final
equations would be difficult to program satisfactorily
using standard methods and it was felt that further
theoretical study would lead to simplifications both
theoretically and computationally; therefore, its use is
not included.

The symmetrical Wiener-Levinson filter,is quite
similar in concept and in simple numerical examples gave
similar numerical answers. Furthermore, one feels that
the Wiener-Levinson symmetrical filter should be able to
do a better job of increasing the signal-to-noise ratio
than the prediction error filter because the former is
derived from both signal and noise information whereas the
latter is derived only from nolse information.

The essential assumption in this experiment is that
we have some means of getting lmowledge of the lonesome-p
spectrum. The various possible means of getting this
knowledge represents a big study in itself. In order to
proceed, we make the following assumption: the spectrum
will not change radically from Logan to Blanca for similar
distances and similar paths. Since Blanca was a stronger
blast than Logan it was hoped that we would be able to
find a distance at which the p-phase could be observed on
Blanca, but n® on Logan, Then we would compute spectrum
of the p-phase on Blanca and the spectrum of the noise
before logan and construct a filter. This filter would
then be applied to Logan in the hopes of observing p on
Logan. Unfortunately, our available digltized data did
not allow even this experiment. The closest approximation
was Blanca 2208 km UP and Logan 2111 km UP., Unfortunately,
1) this is nearer than the distances Leet specified for
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lonesome-p (2500 km on out), 2) the distances may be
different enough to cause a change in the spectrum; 3) the
phase 18 clearly evident on the Logan record even without
any filtering. The best we can hope for is thai we can
show improvement in the signal-to-nolse ratio. Unfortun-
ately, the amount of noise digitized before the signal
arrival was so small as the make unrealistic an estimate
of the improvement ratio., Nevertheless, the experiment
was performed and is depicted in Figure ( TY.-7).

Better data was clearly needed,

IV Conclusion

Given noise spectra and signal spectra which are
as different from each other as 18 typical with microseisms
and p-waves, we can construct a filter which substantially
improves signal-to-noise energy ratio. Because.of distor-
tion, this filter 1s not useful if a detailed study of the
waveform 18 to be made.
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Logan 2111 UP

Assumed Sf..ecfrum From Blanee 2208 UP

Figure IX - 7 Results  Of Detection ExpenmenT.
See Text.
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